HMSC Metallurgy

- These slides were blended from two fine sources:
- California State University

And

 The Institute of Materials Science University of Connecticut

COOLING AUSTENITE

FIGURE 10.27 Possible transformations involving the decomposition of austenite. Solid arrows, transformations involving diffusion; dashed arrow, diffusionless transformation.

MECHANICAL PROPERTIES

 Can control the formation of specific phases and microstructure so that desired properties result

PRODUCTS OF COOLING AUSTENITE

- Slow cooling □ pearlite
- Cool rapidly to upto 550
 C, and hold □ pearlite
- Cool rapidly to 550-225
 C and hold □ bainite

LOG TIME

COOLING EX: Fe-C SYSTEM (1)

Rapidly cool to 350 C Hold for 10000 seconds Rapidly cool to room T

100% Bainite

COOLING EX: Fe-C SYSTEM (2)

Rapidly cool to 250 C Hold for 100 seconds Rapidly cool to room T

COOLING EX: Fe-C SYSTEM (3)

Rapidly cool to 650 C Hold for 20 seconds Rapidly cool to 400 C Hold for 1000 seconds Rapidly cool to room T

Isothermal Transformation Diagram

Iron-carbon alloy with eutectoid composition.

■ A: Austenite

□ P: Pearlite

■B: Bainite

■ M: Martensite

OTHER PRODUCTS: Fe-C SYSTEM (1)

- Spheroidite:
- --□ crystals with spherical Fe₃C
- --diffusion dependent.
- --heat bainite or pearlite for long times
- --reduces interfacial area (driving force)
- Isothermal Transf. Diagram

Spheroidite: Nonequilibrium Transformation

- \blacksquare Fe₃C particles within an α -ferrite matrix
- □ diffusion dependent
- ☐ heat bainite or pearlite at temperature just below eutectoid for long times
- \square driving force reduction of α -ferrite/Fe₃C interfacial area

Coarse pearlite (high diffusion rate) and (b) fine pearlite

MECHANICAL PROPERTIES

 Can control the formation of specific phases and microstructure through a cooling schedule so that desired properties result

SUMMARY: PROCESSING OPTIONS

Adapted from Fig. Austenite (1) 10.27, Callister 6e. moderate slow rapid quench cool coo **Bainite Martensite Pearlite** (☐ + FegC plates/needles) (☐ + FegC layers + a (BCT phase diffusionless proeutectoid phase) transformation) reheat **Martensite** T Martensite Strength bainite Tempered **Martensite** fine pearlite (□ + very fine coarse pearlite 🗖 Fe₃C particles) spheroidite General Trends

Bainite: Non-Equil Transformation Products

Bainite Microstructure

- Bainite consists of acicular (needle-like) ferrite with very small cementite particles dispersed throughout.
- The carbon content is typically greater than 0.1%.
- Bainite transforms to iron and cementite with sufficient time and temperature (considered semi-stable below 150°C).

Martensite Formation

Isothermal Transformation Diagram

- single phase
- body centered tetragonal (BCT) crystal structure
- \square BCT if $C_0 > 0.15$ wt% C
- Diffusionless transformation
- BCT → few slip planes → hard, brittle
- □ % transformation depends only on T of rapid cooling

Martensite needlesAustenite

Effect of Adding Other Elements

- Other elements (Cr, Ni, Mo, Si and W) may cause significant changes in the positions and shapes of the TTT curves:
- Change transition temperature;
- Shift the nose of the austenite-topearlite transformation to longer times;
- Shift the pearlite and bainite noses to longer times (decrease critical cooling rate);
- Form a separate bainite nose;

 Plain carbon steel: primary alloying element is carbon.

Example 11.2:

- □ Iron-carbon alloy with eutectoid composition.
- ☐ Specify the nature of the final microstructure (% bainite, martensite, pearlite etc) for the alloy that is subjected to the following time—temperature treatments:
- □ Alloy begins at 760°C and has been held long enough to achieve a complete and homogeneous austenitic structure.

Treatment (a)

- □ Rapidly cool to 350 °C
- □ Hold for 10⁴ seconds
- □ Quench to room temperature

Example 11.2:

- □ Iron-carbon alloy with eutectoid composition.
- □ Specify the nature of the final microstructure (% bainite, martensite, pearlite etc) for the alloy that is subjected to the following time—temperature treatments:
- □ Alloy begins at 760°C and has been held long enough to achieve a complete and homogeneous austenitic structure.

Treatment (b)

- □ Rapidly cool to 250 °C
- □ Hold for 100 seconds
- □ Quench to room temperature

Example 11.2:

- □ Iron-carbon alloy with eutectoid composition.
- ☐ Specify the nature of the final microstructure (% bainite, martensite, pearlite etc) for the alloy that is subjected to the following time—temperature treatments:
- □ Alloy begins at 760°C and has been held long enough to achieve a complete and homogeneous austenitic structure.

Treatment (c)

- □ Rapidly cool to 650°C
- □ Hold for 20 seconds
- □ Rapidly cool to 400°C
- □ Hold for 10³ seconds
- □ Quench to room temperature

Mechanical Properties: Influence of Carbon Content

Hardness as a function of carbon concentration for steels

