HIGH SPEED MACHINING ON A LOW QUALITY MILL

Martin Kennedy
HMSC – Sept 14, 2013
HOW THIS ALL STARTED

- This is what happens when you attend industry trade shows
To set speeds & feeds on my CNC mill, I rely mostly on my experience.

I am very conservative on speeds in general. This is because I’ve melted several mills.

Good decisions come from experience. Experience is a result of bad decisions.

Speed & feed calculators seem to give:

- feeds that are much too high
- speeds that are a little too slow
Spindle speed
- Rpm = (CS x 4) / dia
- For steel & ½" mill = 70 x 4 / 0.5 = 560 rpm

Feed
- Feed = chipload x n x rpm
- For steel & 4 flute mill = 0.005 x 4 x 560 = 11 ipm

I would never run this fast, even with coolant
THERE HAS TO BE MORE!

- Speeds I use for steel with carbide mills
 - 0.5 – 6 ipm
 - higher speeds require coolant
 - Even slower with tool steel mills
- I was using 0.010 – 0.025” stepover or depth per pass
- Single milling operations frequently required 45 – 60 minutes

- I wondered if I could do better
Saw a milling center demo at Haas Factory Outlet
- ½” carbide mill
- Pocket depth 1.5”
- Spindle 12,000 rpm
- Feed 160 ipm (2.7 ips) – operator said could be higher!
- Transits 1,000 ipm (16.7 ips)
- Tons of coolant
- Huge stream of chips flying out of cut
- 6” x 6” x 2” chunk of metal mostly cut away in 12 minutes!

I calculated about 4+ hours on my mill, using typical parameters I use
HSM – HIGH SPEED MACHINING

- **DEFINITION:** Achieving high metal removal rates with quick milling passes using light milling passes
 - Other definitions exist. No consensus on definition
- **In general, incorporates:**
 - High spindle speed (8,000 – 40,000+ rpm)
 - High feed rates
 - Unconventional milling patterns
 - Combined roughing and finishing passes
 - Less depth passes, up to full depth cuts
 - Improved accuracy
 - Longer tool life
- **Concept is from 1920’s, but equipment not available then**
 - Rapid progress since 1980, with high speed spindles and CNC
 - Developed by mold and die industry, cutting hardened materials
COMPONENTS OF HSM

- Fast moving small tooling ("small" generally meaning ~1/2")
 - As opposed to large hogging tools
 - Counterintuitive, but results in higher metal removal rates

- Low stepover
 - 5 - 15% of tool diameter
 - Better chip clearance
 - Increased mill cooling time
 - Taking the heat out with the chip
 - Minimize deflection

- Specialized G-code
- Selection of speeds in stable zones that avoid chatter
MILL LOADING IN CORNERS

- Conventional milling has 90° mill engagement on straight sections
- Increases to 180° engagement in corners
 - Doubles cutter forces
 - Halves chip clearing
 - Air cooling halved
- Feed & speed tables based on allowable in corners
PATH TO HSM
SPIRALING INTO CORNERS

- Make series of arcs of decreasing radius to cut into corner
- Allows higher feed rate than conventional corner milling
PATH TO HSM

TROCHODIAL MILLING

- Similar concept to spiraling
- Applied to slots instead of corners
- Slots are cut using a series of looping cuts
 - Faster than a big hogging cutter
- Techniques:
 - Loops are more forgiving for slower machines
 - “D”s require faster machine
Spiraling and Trochoidal milling are part of HSM (corners and slots)

New strategies incorporate both plus strategies to keep tool constantly or uniformly engaged

- Available in most major CAM programs
- Starting to see in consumer CAM programs
- All employ looping toolpaths
COMPARISON OF TOOL PATHS

Conventional milling path

HSM milling path
COMPONENTS NEEDED FOR HSM

- CNC Machine
 - Preferably built for HSM
 - High feed rates (1,000 ipm)
 - High spindle speeds (20,000 rpm)

- Toolholders
 - Balanced if speed above 8,000 rpm

- Cutting tools
 - High quality carbide, coatings, lubricants, special HSM tools

- CAM programs
 - Must be able to create HSM toolpaths
 - Principles of HSM can be applied to lesser machines
HSM ON A LESSER MILL

- Chinese Rong Fu mill/drill clone
- Originally converted to CNC by CNC Masters
- Control system completely replaced
TESTING

- Ran at increasing feed rates using test programs
 - X transits, back and forth
 - Y transits, back and forth
 - Circle transits
 - Stairstep XY transits

- Stepper motor would lock up / lose steps at:
 - X 200 ipm
 - Y 150 ipm
 - XY 50 ipm!
HSM TRIAL 1

- Simple T-nut design
 - Speed 45 ipm
 - Fast transit 150 ipm
 - Spindle 4,000 rpm
 - Depth 0.4
 - Stepover 0.010
 - Total cut time 4:20
- 13,500 lines of G-code
- Crashed on lost steps in fast Y transit
- Gave me encouragement that it could be done
TESTING

- Initial thought was that power supply was inadequate
 - 4A, 70V
 - Tried 12A, 60V high quality supply – no change
- Next thought was that gibbs not adjusted correctly
 - Re-adjusted – little effect
- Next investigation was into Mach3 parameters
 - Tried variety of kernal clock rates
 - Played with stepper motor accelerations
MODIFIED POWER SUPPLY

- Beefed up 70V power supply
 - Added 7,800 μF cap, replacing 1,000 μF cap
 - Had serial connections for Gecko power. Made “home runs” for each supply line
STEPPER MOTOR

- Stepper motors have less torque at higher speeds
- Y axis carries maximum load – 2 ways, vise, part
- Tried more powerful stepper motor
- Increased feed:
 - X 225 ipm
 - Y 200 ipm
 - XY 75 ipm
HSM TRIAL 2

- Complex Shape
- 43,900 lines of G-code
 - Speed 50 ipm
 - Fast transit 150 ipm
 - Spindle 4,000 rpm
 - Depth 0.3
 - Stepover 0.010
 - Total cut time 11:00 vs 85:45 conventional
- Crashed bit at fast Y transit of 150 ipm due to lost steps
 - That was exciting
GECKODRIVE STEPPER CONTROLLER

- Looked at signals to GeckoDrives
 - Observed step signal jitter on oscilloscope at higher frequency (feed rate) signals
 - Caused by way Mach3 sends signals
 - Steppers
 - 200 steps/rev x 10 microsteps/step = 2000 pulses/rev
 - Ball screws 5 turns/inch => 10,000 pulses/in
 - 200 ipm / 60 sec/min x 10,000 pulses/in = 33 kHz pulses/sec
 - Stepper speed is 200 ipm * 5 turns/inch = 1,000 rpm
SMOOTHSTEPPE

- Purchased SmoothStepper
 - Offloads generation of step signals from computer running Mach3
 - Dedicated processor for step signals
- Increased feed rates
 - X 225 ipm
 - Y 225 ipm
 - XY 175 ipm!
Cut slots
- Speed 50 ipm
- Fast transit 125 ipm
- Spindle 4,000 rpm
- Depth 0.380 and 0.0200
- Length x width 1.5" x 1.38" and 3" x 0.85"
- Stepover 0.015
- Total cut time 4:42 and 7:09

Success, with nice finish and accuracy!
QUESTIONS?