

Arduino Microcontrollers

By Norm Berls

Back in the day

- Arduino invented in 2005
- Art students at the Interaction Design Institute Ivrea in Ivrea, Italy, needed controller for kinetic art
- Invention worked so well, they went into the digital controller business
- Open Source design is public and anyone can copy... and do they ever
- Many enhancements since then
- Arduino brought electrical engineering down to the level of the hobbyist

A Microcontroller

- More than an on/off switch.
- Less than a computer
- Programmable: you must write a program.
- About the size of a credit card.
- Usually small project or hobby applications.
- Possibly limited CNC.

How It Works

- Hook up your choice of electronic devices to the Arduino board.
- You can buy devices ready made for Arduino
- You can wire components together on a solderless breadboard and connect to Arduino
- Connect the Arduino to a USB port on a PC
- Write an Arduino program with a special program on the PC and download it into the Arduino.
- Your program will immediately begin to execute and keep on executing, and executing...
- Disconnect the Arduino from the PC
- Connect a battery up to the Arduino
- The Arduino will remember the last program you loaded and will immediately execute it when you turn the battery power on
- Your program will only stop executing when the power is turned off to the Arduino

You gotta have

- o PC
- Windows, IOS, Linux
- Multimeter
- Soldering Iron

You gotta know something about

- PCs and the Internet
- Programming (C, C++)
- Electronics
- Arduinos

Arduino Devices and Features

A Connected Microcontroller

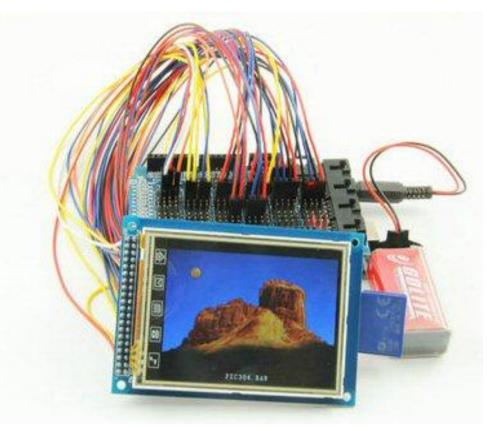
- Connects to electronic components:
 - Switch
 - Resistor
 - Capacitor
 - Diode
 - Transistor
 - LED (Light Emitting Diode)
 - Solenoid
 - Relay
 - Potentiometer
 - IC chip

Fancy Sensor Connections

- Sensors:
 - Heat (IR)
 - Humidity
 - CO2
 - Contact
 - Proximity
 - Tilt (gyroscope)
 - Motion (inertia)
 - Light
 - Sound
 - Key Pad
 - Real Time Clock
 - GPS

Sensor Input

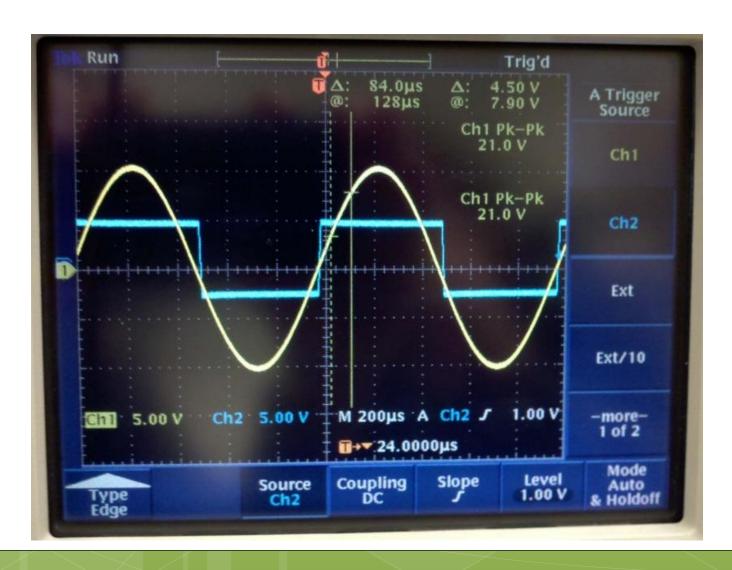
- Sensor input comes in the form of variable:
 - Voltage
 - Resistance
 - Capacitance


Fancy Graphical Connections 1

- LCD LiquidCrystal Display
- o 2 colors
- 2 X 16 most common
- 4 X 20 available
- Count those connections!

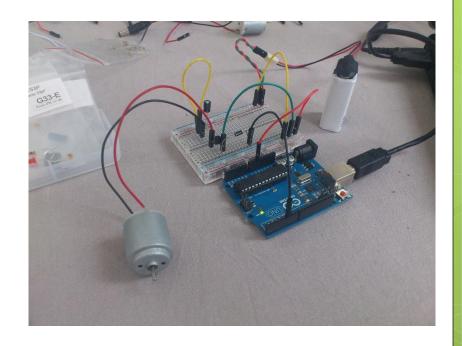
Fancy Graphical Connections 2

- TFT
- Thin Film Transistor
- Color Graphics
- Choice of fonts.
- Fast way to use up Arduino IO pins
- SPI serial bus requires just 2 pins

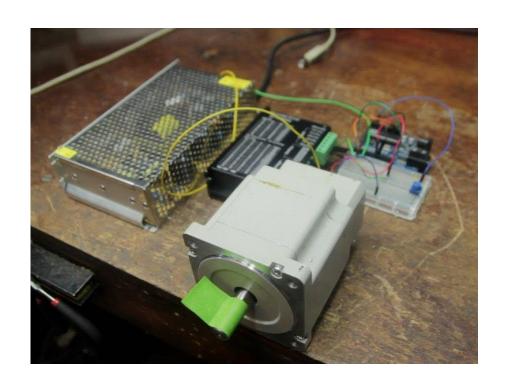


Fancy Graphical Connections 3

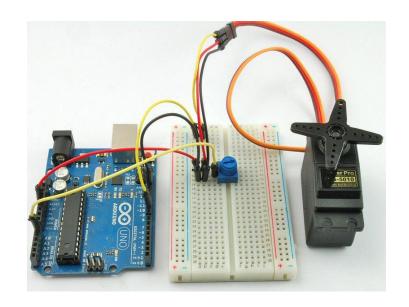
- TFT (Color)
- Touch sensitive
- Are we all thinking DRO?



Inductance Anyone?


Mostly DC Motors, if you please.

- W and WO brushes
- Arduino powered by computer
- Motor powered by battery or other external power source
- Arduino controls motor or additional motor controller.
- Faster/Slower
- Forward/Backward
- Contact sensors for precise control.


Stepper Motors

- Arduino
- Breadboard
- Controller
- 24V, 10A power supply
- Stepper Motor
 - NEMA 34
 - o 5.5 A, 132 W
 - 40 in-lb
 - 0.179 HP
- 180 rotation

Servo Motors

- Most examples involve only small motors.
- Feedback allows precise control and checking.

No Way, Jose

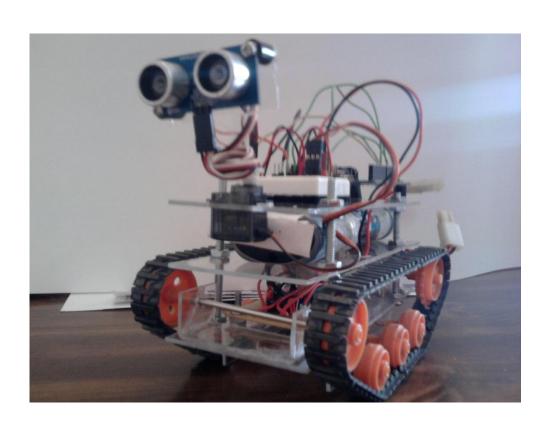
- At least a transistor
- Maybe a relay
- Maybe a controller
- Any motor
 pulling over 1 A
 is going to
 need a heat
 sink or fan on
 the Arduino
 side

About CNC

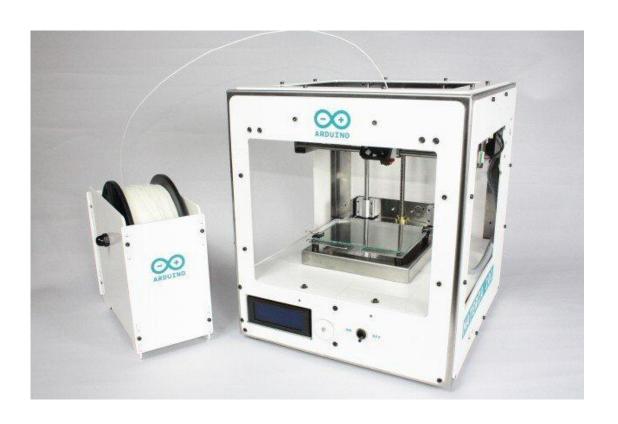
- gShield by Synthetos touted as the CNC solution
- Works on Arduino Uno... the smallest Arduino
- Apparent compatibility problems with Mega
- GRBL-Arduino-Library needed a G-code interpreter (subset only)
- 2.5 Amps per winding
- 12-30 Input Voltage
- TI DRV8818 Stepper Drivers

Micro SD

- Instead of cramming all your data into memory at once
- Non-volatile memory card
- Megabytes 16, 32
- Read/Write
- M codes
- G codes
- Limited CNC instruction set
- Or data collection... weather station, jogger mileage



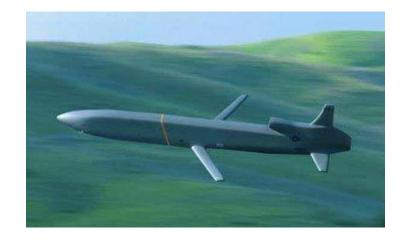
Communications

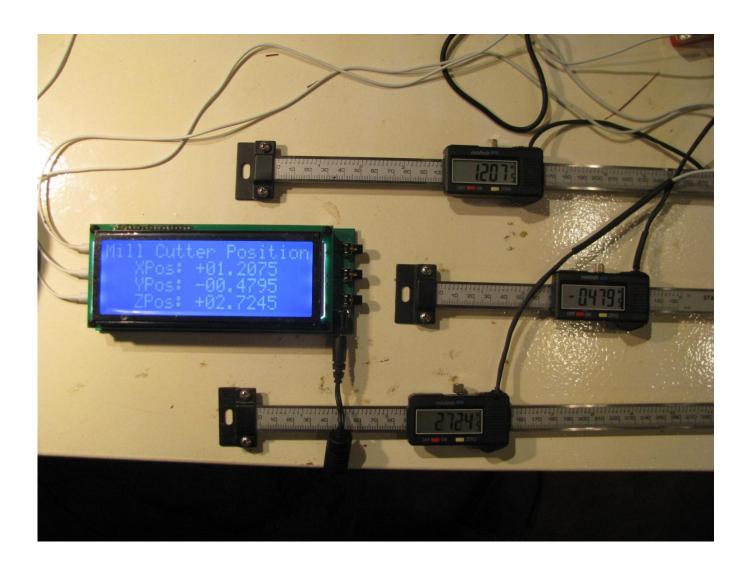

- Various Serial Ports (Standard, SPI, I2C)
- USB
- Ethernet
- WiFi
- Blue Tooth
- RFID

Insanity works better on Arduino

Harass the Cat

3D Printer... \$800


Millie?

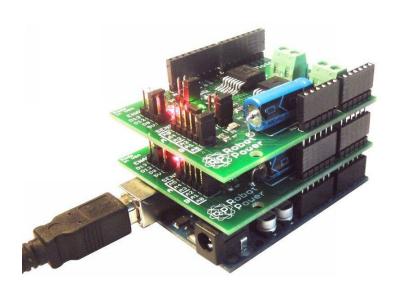

Incoming!!!

- Motion shield
- Gyroscope shield
- Altitude shield
- GPS Shield

You still have to know how to pilot a plane and navigate through cross winds

DIY DRO

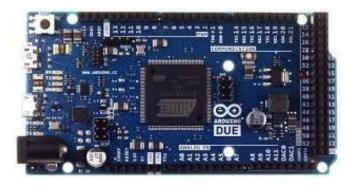
The Devilish Details or What It Is


Geography

- USB plug for program development
- Program stays in Arduino even when power is off.
- 7-12 V power plug
- 40 uA per pin, 200 uA total
- Reset Button
- Timing crystal
- Digital IO pins
- Analog Input pins
- Power & Ground pins
- Serial Ports
- Some digital pins double as analog output (PWM) Pulse Width Modulation.

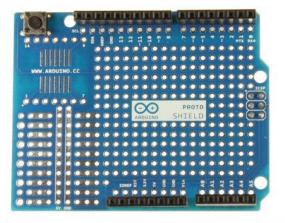
Stacking

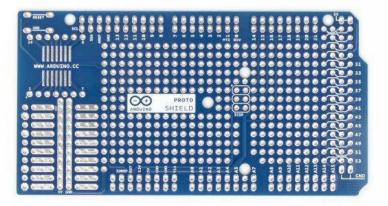

- Add on boards are called Shields
- Shields are designed for stacking
- Pins pass through from board to board
- Pins cannot be reused
- Lack of clearance can cause short circuits
- Shield conflicts can arise when two shields want to use the same IO pin



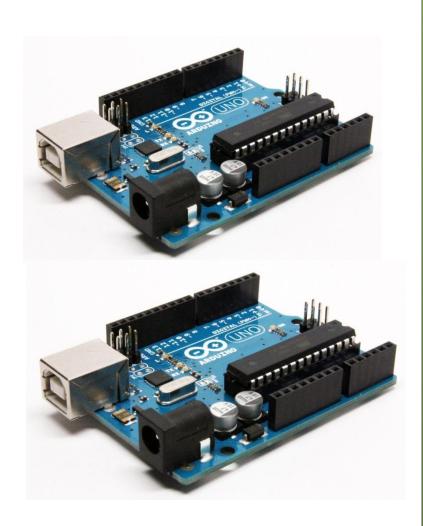
Add More Pins

- Uno
 - 5.5 volts
 - 4 KB flash memory
 - o 14 pins
 - 8 bit addresses
- Mega 2560 R3
 - 5.5 volts
 - 256 KB flash memory
 - 66 pins
 - 8 bit addresses
- Due
 - 3.3 volts
 - 512 KB flash memory
 - 66 pins
 - 32 bit addresses





DIY Shield


- Prototype on breadboard
- Move to prototype shield
- Solder in place
- Add it to the stack

When an Arduino gets Bored

- It talks to itself
- Arduinos can talk to each other through the I2C serial bus.
- When you run out of IO pins, you split the work onto multiple Arduinos
- One Arduino is the master
- The others are slaves

Versioning Dilemmas

- Most shields that are compatible with Uno will work on Mega.
- Many versions of Arduino are now obsolete and no longer made. Compatibility?
- Pin assignment and functionality can change between versions.
- Voltage can be a compatibility issue for shields.

Digital IO

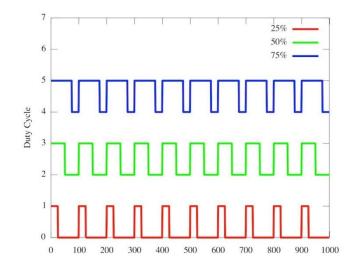
- WRT the Uno and the Mega
- +5 volts is considered the input voltage
- 0 volts is the ground.
- +5 volts is the "HIGH" setting or digital 1
- o 0 volts is the "LOW" setting or digital 0
- Any digital pin can be declared as input or output, but not both.

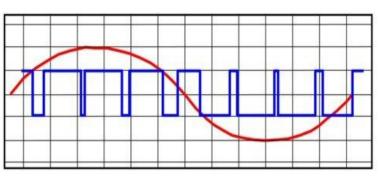
Analog Input

- Arduino has certain designated pins for analog input named A0, A1, A2, A3.....
- "analogRead" method returns integer values between 0 and 1023

```
input = analogRead(A0);
```

 "constrain" method clips analog values to fit in a certain range


```
input = constrain(analogRead(A0),250,750);
```


 "map" method scales analog values from one range to another range

```
Input = map(analogRead(A0),0,1023,0,255);
```

Pulse Width Modulation or Analog Output

- PWM output is done via specially designated digital pins
- It is really on/off digital output but, the duration is precisely controlled in a "duty cycle"
- Used to control motors by creating the illusion of variable voltage

Serial IO

- One bit at a time, one after the other
- Standard Serial
- SPI serial bus (2 wires) send, receive
- o I2C serial bus (2 wires) send-receive, timer
- Specialized libraries needed to support serial IO
- You can have a several devices working off the same I2C serial bus because each one has to have a unique address.

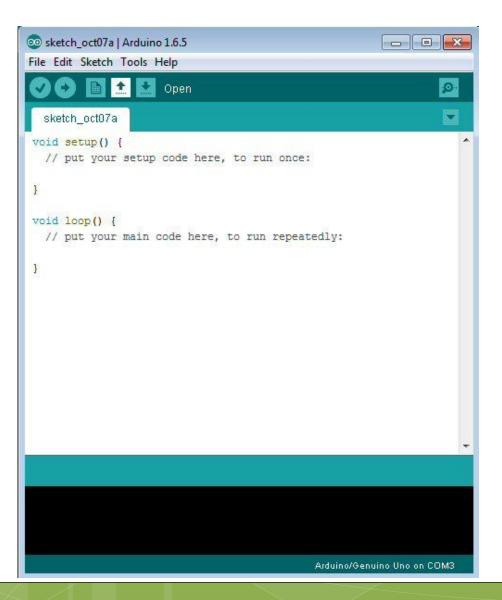
Programming the Arduino

Bits and Bytes

- Arduino calls a program a "sketch"
- Arduino language is based on C
- Some C++ mixed in
- Libraries special program functions written for use with Arduino... extensions to the Arduino language
- Libraries and Shields go together
- If you need a library, copy from Internet and install
- Sketches are written with the Arduino IDE (Integrated Development Environment)
- IDE is a Java-based program that runs on a PC
- Download the IDE off the Internet... for free!

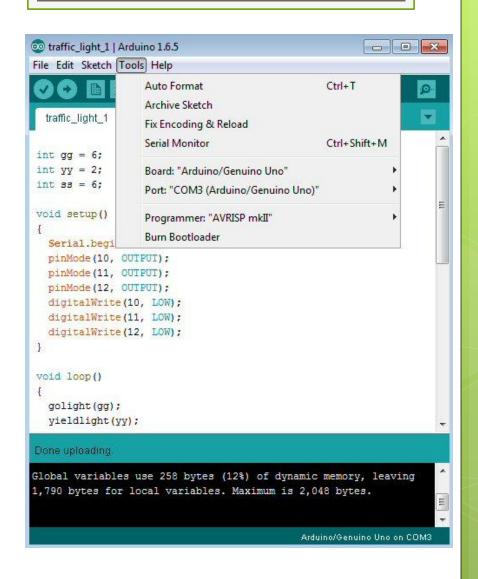
How much C?

- Floating point numbers and arithmetic
- Trig functions etc.
- Logic
 - o If, Else
 - Case
 - Comparison operators <> == !=
 - o And, Or && ||
- Loops
 - While
 - Indexed
- Dynamic memory allocation
- Arrays
- Text strings


Beyond C

- Arduino supports events
- You can write your own libraries... if you know C++
- The Arduino IDE is written in Java

The IDE What to do with it?


- Integrated Development Environment a program for the PC that lets you write Arduino sketches.
- https://www.arduino.cc/en/Main/Software
- Or just search for "Arduino IDE"
- Download and install
- Run an "A" cable from a USB port to the connector on the Arduino board.
- Tell the IDE which COM port your are connecting with.
- Tell the IDE which kind of Arduino board you are plugged into. Different boards have different chips and hence speak different versions of the Arduino language

The Arduino IDE

IDE Tools Menu

- Pulled down the tools menu
- Board option controls board type
- Port option controls which COM port the Arduino board is connected to
- Remember, this is a USB port

IDE Load

- Open an existing sketch
- Menu will show example sketches of how Arduino interacts with various devices.
- First menu item brings up list of sketches you have saved.

```
sketch_oct07a | Arduino 1.6.5
                                                          - - X
File Edit Sketch Tools Help
  sketch_oct07a
void setup() {
   // put your setup code here, to run once:
void loop() {
  // put your main code here, to run repeatedly:
                                               Arduino/Genuino Uno on COM3
```

IDE Edit

- Sketch "traffic_light_1" has been loaded.
- Slider allows scroll to bottom of sketch.
- Cursor can be placed anywhere in sketch.
- Typing enters new text or replaces old
- Enter creates a new line
- Copy to clipboard and paste will work

```
- - X
oo traffic_light_1 | Arduino 1.6.5
File Edit Sketch Tools Help
  traffic_light_1
 int qq = 6;
 int yy = 2;
int ss = 6;
void setup()
   Serial.begin (9600);
   pinMode (10, OUTPUT);
   pinMode (11, OUTPUT);
   pinMode (12, OUTPUT);
   digitalWrite (10, LOW);
   digitalWrite(11, LOW);
   digitalWrite (12, LOW);
 void loop()
   golight (gg);
   yieldlight (yy);
                                                 Arduino/Genuino Uno on COM3
```

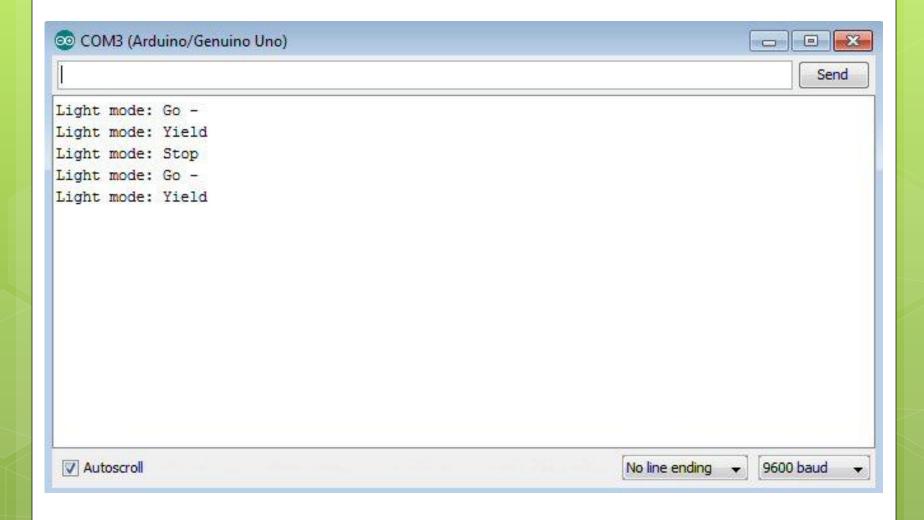
IDE Compile

- Clicked on the check icon
- Sketch compiled without error
- Note "Done compiling" message
- Compiling means translating program text into the machine language of the Arduino chip
- The compile option will report any syntax errors in your code

```
on traffic light 1 | Arduino 1.6.5
                                                           File Edit Sketch Tools Help
  traffic_light_1
 int gg = 6;
 int yy = 2;
 int ss = 6:
 void setup()
   Serial.begin (9600);
   pinMode (10, OUTPUT);
   pinMode (11, OUTPUT);
   pinMode (12, OUTPUT);
   digitalWrite (10, LOW);
   digitalWrite (11, LOW);
   digitalWrite (12, LOW);
 void loop()
   golight (gg);
   yieldlight(yy);
 Done compiling
Global variables use 258 bytes (12%) of dynamic memory, leaving
1,790 bytes for local variables. Maximum is 2,048 bytes.
                                                Arduino/Genuino Uno on COM3
```

IDE Load/Run

- Note that load icon is highlighted
- This option compiles the sketch and loads it to the Arduino
- Then the sketch immediately starts to run on the Arduino


```
on traffic_light_1 | Arduino 1.6.5
                                                            - 0 X
File Edit Sketch Tools Help
                                                                     ø.
                       Upload
  traffic_light_1
 int qq = 6;
 int yy = 2;
 int ss = 6;
 void setup()
   Serial.begin(9600);
   pinMode (10, OUTPUT);
   pinMode (11, OUTPUT);
   pinMode (12, OUTPUT);
   digitalWrite(10, LOW);
   digitalWrite (11, LOW);
   digitalWrite (12, LOW);
 void loop()
   golight (gg);
   yieldlight (yy);
Done compiling
Global variables use 258 bytes (12%) of dynamic memory, leaving
1,790 bytes for local variables. Maximum is 2,048 bytes.
                                                Arduino/Genuino Uno on COM3
```

IDE Load/Run

- Note "Done uploading" message
- The sketch has been loaded to the Arduino and is running
- Clicked on the serial output icon
- This sketch contains instructions to write messages to the standard serial port.
- Clicking the serial icon makes the serial port output visible in a window.
- This only happens under the IDE.

```
- - X
oo traffic_light_1 | Arduino 1.6.5
File Edit Sketch Tools Help
  traffic_light_1
int gg = 6;
 int yy = 2;
 int ss = 6:
 void setup()
   Serial.begin (9600);
  pinMode (10, OUTPUT);
  pinMode (11, OUTPUT);
  pinMode (12, OUTPUT);
   digitalWrite(10, LOW);
  digitalWrite(11, LOW);
  digitalWrite (12, LOW);
void loop()
  golight (gg);
   yieldlight (yy);
 one uploading
Global variables use 258 bytes (12%) of dynamic memory, leaving
1,790 bytes for local variables. Maximum is 2,048 bytes.
                                                Arduino/Genuino Uno on COM3
```

IDE Serial Output

IDE Save

- Clicked on the save icon
- Sketch was saved to disk

```
on traffic_light_1 | Arduino 1.6.5
                                                          File Edit Sketch Tools Help
                 Save As...
  traffic_light_1
 int gg = 6;
 int yy = 2;
 int ss = 6;
 void setup()
   Serial.begin (9600);
  pinMode (10, OUTPUT);
  pinMode (11, OUTPUT);
   pinMode (12, OUTPUT);
   digitalWrite (10, LOW);
   digitalWrite (11, LOW);
   digitalWrite (12, LOW);
 void loop()
   golight (gg);
   yieldlight(yy);
 Done uploading
Global variables use 258 bytes (12%) of dynamic memory, leaving
1,790 bytes for local variables. Maximum is 2,048 bytes.
                                               Arduino/Genuino Uno on COM3
```

traffic_light_1 Arduino Sketch

```
int gg = 6;
int yy = 2;
int ss = 6:
void setup()
 Serial.begin(9600);
 pinMode(10, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(12, OUTPUT);
 digitalWrite(10, LOW);
 digitalWrite(11, LOW);
 digitalWrite(12, LOW);
void loop()
 golight(gg);
 yieldlight(yy);
 stoplight(ss);
```

```
void stoplight(int time)
 digitalWrite(10, LOW);
 digitalWrite(11, LOW);
 digitalWrite(12, HIGH);
 Serial.println("Light mode: Stop");
 delay(time * 1000);
void yieldlight(int time)
 digitalWrite(10, LOW);
 digitalWrite(11, HIGH);
 digitalWrite(12, LOW);
 Serial.println("Light mode: Yield");
 delay(time * 1000);
void golight(int time)
 digitalWrite(10, HIGH);
 digitalWrite(11, LOW);
 digitalWrite(12, LOW);
 Serial.println("Light mode: Go -");
 delay(time * 1000);
```

Electronics

Watt Amp, Volt?

- Keep track of which side of any device has the most + voltage
- A multimeter with automatic scaling is a good tool for isolating circuit problems
- Most every device will have some amount of voltage across it
- A device with no measurable voltage across it is suspect

Getting Zapped

- Some devices are sensitive to polarity
- LEDs have a long wire and a short wire. The long wire must connect to the + input or the LED will not light.
- Arduino outputs +5 V at 40 uA.
 This is enough to burn out a micro LED. 1000 Ohm resistor in series with the LED is necessary to keep LED from burning out.
- Some capacitors will explode if connected to the wrong polarity.

iPhone App

- Motors are confusing
- Amps x Volts = Watts
- How many HP?
- iPhone app "Units Plus" does units conversions
- Including power
- \circ Watts \rightarrow HP

iPhone App

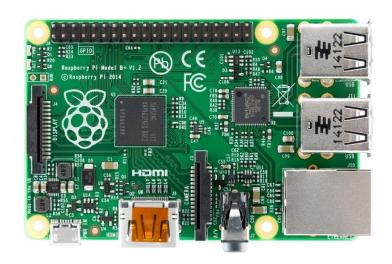
- Color band codes on resistors are troublesome
- iPhone app "Resistor" converts colors to Ohms
- Does both 4 band and 5 band resistors.

Arduino School

Books & Books

Title	Author
Sams Teach Yourself Arduino Programming in 24 Hours	Richard Blum
Arduino for Dummies	John Nussey
Arduino Projects for Dummies	Brock Craft
Make: Electronics	Charles Platt
Make: Arduino Bots and Gadgets	Kimmo Karvinen Tero Karvinen
Programming Arduino Next Steps	Simon Monk

Tutorial Websites


Name	URL
Arduino	www.arduino.cc
Learn Arduino	learn.adafruit.com/category/learn-arduino
Arduino Tutorial	http://www.ladyada.net/learn/arduino/
Sparkfun	learn.sparkfun.com/tutorials/tags/arduino?page=all
YouTube	www.youtube.com

Price Comparison

Merchant	Price Arduino Uno R3
Adafruit	\$24.95
Amazon	\$15.67
Arduino Store, USA	\$24.95
Sparkfun	\$24.95
Ebay	\$ 3.95
Sain Smart	\$ 8.89
Radioshack	\$34.99
GearBest	\$10.99
Micro Center	\$ 9.99

Raspberry Pi

- A computer and not a controller
- Megabytes of memory
- Connections to keyboard and mouse
- Much faster than an Arduino
- Connections to peripheral sensors and actuators generally more difficult
- Programming in Python
- Runs Linux OS
- Raspberry Pi and Arduino can talk to each other through the I2C serial bus

Future Project

- Real time clock
- Westminster chimes
- Components
 - Tubular wind chimes
 - Real time shield
 - TFT shield for time/date
 - Key pad shield
 - Solenoids
 - LCD shield for reset
 - On/off switch for chimes
 - Arduinos

The End